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Preface

In this thesis, I have analyzed the effects of three end

conditions on laminated plates made of orthotropic plies.

The behavior of orthotropic plates with a single fiber orien-

* tation were also considered to give the reader a point of

reference as some work in this area has already been accom-

plished. The point of Saint Venant's validity was found in

each case in order to show the region where this principle

* can be applied.

Completion of this study has required many hours of

assistance from other individuals, and I would like to speci-

fically acknowledge a few at this point. I am indebted to

Capt. William Witt for sharing his knowledge and experience

in the use of the finite element program employed in this

study. I would also like to acknowledge Capt. Jerry Stinson

for his helpful comments and guidance in the use of the CDC

Cyber 74 Operating System. I must further acknowledge the

comments and suggestions made by my thesis committee members,

Dr. Ernest Dorko and Dr. Peter Torvik. As in any thesis work,

the success and often the outcome depend largely on the guid-

ance and assistance provided by one's thesis advisor. A mere

acknowledgement cannot express the debt of gratitude I owe my

thesis advisor, Dr. Anthony Palazoto for his valuable advice

and direction given throughout this work. Finally, I must

acknowledge my wife, Linda, for her encouragement and support

through the many months of work represented here.
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Abstract

The structural stiffness properties of composite lamin-

ated plates are experimental information needed in order to

design aircraft components manufactured with composite

materials. A common test used to obtain the necessary moduli

is to apply a tension load on the ends of the specimen.

* Little study, if any, has been reported relating the applica-

tion of the Saint Venant's principle within a multi-ply

laminated plate.

Previously, researchers have shown that routine applica-

tion of Saint Venant's principle in problems involving a

single composite lamina is not generally justified. This

study offers justification for using Saint Venant's principle

in commonly laid-up graphite epoxy plate specimens. The

boundary conditions considered are attempts at modeling

varying end supports for an in-plane loading. The analysis

has been carried out using a finite element model considering

three aspect ratios: 3, 5, and 10.

viii



INVESTIGATION OF SAINT VENANT'S PRINCIPLE

AS RELATED TO LAMINATED

COMPOSITE PLATES

I. Introduction

This thesis is an investigation of Saint Venant's prin-

ciple in laminated composite plates by use of a finite element

model. Saint Venant's principle has played a fundamental

role in the application of classical elasticity theory to

problems of practical interest. The statement of Saint Venant's

principle does not lend itself to a concise formulation which

can easily be translated into mathematical terms. The regions

of validity of this principle in isotropic materials has been

extensively studied and is readily available in literature

[1]. However, the conquest of space and the rise in energy

costs have made the Air Force, as well as the aerospace in-

dustry, very conscious of overall vehicle weights. This has

lead to the use of lightweight laminated composite materials

as primary load bearing structures. Advanced composite

material use has prompted numerous studies of the behavior

of orthotropic and anisotropic materials using either classi-

cal elasticity theory or experimental procedures to determine

material properties. The use of the Saint Venant assumption

is basic to the measurement of these material properties as

well as to structural design.
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Problem Statement

This investigation used the finite element analysis and

classical laminated plate theory to model the stress gradients

throughout plates with aspect ratios (i.e. length to width)

of three, five, and ten. This modeling technique allows the

monitoring of stress gradient propagation at discreet points

within the plate. As the decay of the stress gradient would

logically depend on the loading conditions, different loading

* -. conditions are considered. Detailed discussion of the loading

conditions is found in the numerical analysis section. In

addition, the material properties have a great bearing on the

decay lengths. The anisotropic behavior of laminated plates

is directly related to the ply orientations. In order to

ascertain the effects of ply orientation (0, ±45, 90)s,

(0, ±45)s, (±45)s, and (0, 90)s laminated plates are analyzed.

The individual lamina characteristics were also investigated

for Odeg, 90deg, and 45deg orientations. The analysis

utilized the Control Data Corporation 6600/Cyber 74 computer

system.

Throughout this study the material properties for graphite

epoxy listed by Ashton, et al. [2] were used in calculating

stresses. These properties are shown in Table 1.

Background

An extended discussion of some of the theoretical formu-

lations and further definitions of the Saint Venant's principle

is presented in a subsequent section. For purposes of the

2



TABLE I

Graphite Epoxy Properties

Elastic Constants * Allowable Stresses

t .1 in axt 70 ksi

E11  18.5 x 106 psi oxc 110 ksi

E 2 2  1.54 x 106 psi a 6.5 ksio. E22 • yt•

G .85 x 106 psi a 15 ksi

V.25 a 8.5 ksi12 " xy

NOTE: *Used as input parameter for OPSTAT only.

present discussion, Saint Venant's principle is assumed to be

the ability to replace complicated end loads with statically

equivalent loads. The errors caused by this assumption will

die out or decay at a distance sufficiently far from the ends.

This definition closely parallels those given in elementary

solid mechanics texts such as reference [3]. The interpre-

tation of this principle, as well as its application, is not

entirely clear. The justifications for the use of this

assumption are largely empirical; however, a large class of

problems are idealized mathematically using this assumption.

Many of these problems would be difficult, if not impossible,

to solve using a classical elasticity approach. An example

of a difficult problem which has been simplified by the use

of this principle is the simple tension test in which the ends

of the specimen are clamped. The Saint Venant's principle is

invoked by assuming a uniform force distribution sufficiently

3



far frmthe clmigdevices.

It is evident from the many formulations and examples

given in the literature that the decay length or distance

sufficiently far from the end forces in a body depends on the

boundary conditions, body geometry, and material properties.

It is reasonable to assume that the region of validity for

the Saint Venant assumption will be different for isotropic,

orthotropic and anisotropic materials.

Using classical elasticity theory, Horgan [14] has investi-

gated the decay of end effects in anisotropic materials and

has concluded that the end effects decay slowly in highly

anisotropic materials. The slow decay of stresses with

distance from the boundary of a body under the influence of

self-equilibrating forces gives rise to questions about the

measurement of elastic material properties. Folkes and

Arridge [5] have shown experimentally that end effects in

highly anisotropic polymers are very slow to decay and can

give rise to erroneous material property measurements.

Choi and Horgan [6], again using classical theoretical

elasticity, have investigated the decay lengths in an ortho-

tropic material. Further detail of the mathematical solution

employed by Choi and Horgan can be found in Appendix D. This

analysis used a series representation of the solution to show

that the decay lengths along the fiber axis of an orthotropic

composite material is considerable in small aspect ratio plates.

The question of applications to multilayered composite

plates of similar aspect ratios is prompted and is the subject

4



of this investigation. Also, questions are raised concerning

orientations other than those along the fiber axis.

The study of off-axis behavior of composite materials has

been reported by Pagano and Halpin 171. This study indicates

that significant shear and bending effects are present in

tension tests which incorporate clamped ends. The experimen-

tal results show large, non-uniform displacements near the

clamped edges and more uniform displacements near the center

.,< of an off-axis plate. Pagano and Halpin have shown large

shear coupling effects in the off-axis specimens. Jones [81

has commented that these results indicate that a much longer

gage length is needed in the off-axis tension specimen in

order to reach a region in which Saint Venant's principle may

be applied. Pagano and Halpin have further stated that a

possible alternative is to test bidirectional (±e)s specimens

for material properties.

Whitney [91 has shown that material properties measured

in tensile tests of symmetric orthotropic laminates may be a

function of the stacking sequence. He further notes that if

end conditions due to clamping are neglected in off-axis

tensile tests, erroneous values for E xx will result. The

magnitude of the error is inversely proportional to the aspect

ratio of the plate. Wu and Thomas [101 have further pointed

out that the clamped end condition induces a moment which is

not a part of the Saint Venant effect. This further compli-

cates the experimental study of this problem. Rizzo [111,

using a finite element model, has pointed out that the rotation

5~



of the specimen near the clamp is a function of the specimen

aspect ratio and the rigidity of the clamp as well as material

properties. He has concluded that rotating clamps would help

reduce some of the end effects, and aspect ratios greater

than six are needed. Richards, et al. E12j have confirmed the

findings of Rizzo using another finite element model. This

model utilized two-dimensional, constant strain triangles

similar to the one used in this study.

Although much can be found in the literature about the

orthotropic composite plate under end loads, little has been

* said about the laminated plate under similar loads. It is

hoped that this study will help bridge that gap.

6



II. Theory

The theoretical considerations in this study may be summed

up by answering the following questions. What is the general-

ized Saint Venant's principle? Where is this principle valid?

Does the model used correctly transfer the load? When does

laminated plate theory apply? The first two questions are

discussed in the following subsection. The last two questions

have to do with the implications of a two-dimensional model

and are discussed in a separate subsection.

Saint Venant's Principle

In 1855 Saint. Venant stated the principle of elastic

equivalence of statically equal systems of forces. This prin-

ciple was stated in justification of a result which applied

rigorously to a load condition other than the one under study.

The original statement of the principle has been greatly

generalized to include all types of loading systems. Because

of the fundamental nature of this principle in solid mechanics,

further study of its application in orthotropic and anisotropic

materials is needed, but a solid understanding of the basic

concepts related to the principle is required.

One formulation of Saint Venant's principle, attributed to

Zanaboni by Fung [13], considers strain energy density as a

measure of the region of validity in an arbitrary body. This

density is shown to decrease in cross sections farther removed

from the surface where a generalized force distribution anomoly

7



occurs. If one is sufficiently removed from the force ano-

moly, the strain energy density is negligible. The region of

validity of Saint Venant's principle under this formulation

is that region where the strain energy density to the force

anomoly is negligible. The Zanaboni formulation is now as

follows:

Let S1 and S be two nonintersecting sections of a body

outside the sphere shown in Fig 1. If the section S2 lies

at a greater distance than the section S1 from the sphere in

* ,which a system of self-equilibrating forces acts on the body,

then the strain energy density caused by surface tractions

at R2 is less than the strain energy density caused by sur-

face tractions at R1 , where R1 and R2 are the surface areas

at cross sections S1 and $2, respectively.

The significance of this result is that at some point

sufficiently far from the sphere, the effects of the force

system is negligible. The effect of the true end condition

load is unimportant if Saint Venant's principle is applicable.

This can be further generalized to justify assuming a uniform

edge loading where a non-uniform edge loading occurs.

Another formulation of Saint Venant's principle due to

Von-Mises is presented to give further insight; details can

be found in Fung. Von-Mises considered four examples of

forces on the boundary of a half space. The forces, F,

acted on a small circle of diameter, c, as shown in Fig 2.

The order of magnitude of the largest stress component at

an arbitrary point which lies a distance R from the circle

8



* iSt S1

a)

Rz 0e)

Fig 1. Elastic Body Considered by Zanaboni

(I>F F
a) b)

F

o) d)

Fig 2. End Perturbations Considered by Von Mises
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is aM x = F/R2  for case a, and on the order of ({/R)oo for

00cases b through d where ao is the uniform stress value that

would be assumed at a suitable distance. This leads to the

conclusion that end effects and surface stress variations

become negligible at some point sufficiently far from the edge.

Another example of the decrease in the end condition force

has been demonstrated by Timoshenko and Goodier [1] for an

isotropic plate using a classical elasticity series solution.

. This example shows a plate under a single point compressive

load P at the center of the short ends. The stress at cross-

sections along the plate length are shown to uniformly

approach P/A, where A is the cross-sectional area at a dis-

tance equivalent to the width of the plate. At this distance,

the load could be assumed equal to a uniform stress, ao = P/A.

This example is considered as justification in using a simple

equivalent stress for other loading conditions by invoking

Saint Venant's principle at a particular distance [4]. In

general, this is not true for orthotropic composite materials,

as shown by Choi and Horgan. Thus, the question is raised

pertaining to the region of validity in laminated composite

plates. The study of this region has obvious utility in

design and measurement of material properties.

The author has found several practical descriptions of

Saint Venant's principle in the literature of which two are

mentioned here. The first is due to Filonenko-Boradich [14]

and is repeated here: "At points in a solid which are suffi-

ciently far from the surfaces of application of external loads,

10
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stresses depend very slightly on the particular manner in

which the loads are applied." One drawback in this defini-

tion of Saint Venant's principle is the lack of load defini-

tion. A better definition, and the one which has been used

in this study, has been offered by Sokolnikoff [15). His

statement of Saint Venant's principle is as follows:

If some distribution of forces acting on a portion
ofthe surface of a body is replaced by a different

distribution of forces acting on the same portion of
the body, then the effects of the two different dis-
tributions on the parts of the body sufficiently far
removed from the region of application of the forces
are essentially the same, provided that the two dis-
tributions of forces are statically equivalent.

Here static equivalence refers to equivalent resultant forces

and moment. This definition gives the necessary equivalence

of force guidelines.

The previous definitions and concepts have answered the

first two questions raised at the opening of this section.

The previous discussion has given some insight into how the

Saint Venant assumption was originally employed and how it has

been generalized into a fundamental building block of solid

mechanics. This study has applied the same definitions to the

laminated composite plates to give examples and to determine

the appropriate decay lengths of specific end condition

-J effects.

Two-Dimensional Model Implications.

The application of Saint Venant's principle in an elastic

solid has to be three-dimensional for complete validity. In

order for a two-dimensional model to be valid, the state of



stress in the third dimension must be shown to have negligible

affect on the stress gradients in the plane of the two dimen-

sions modeled. Filonenko-Boradich has stated that the surface

of force application must be small compared to the overall

dimensions of the body, and the surface of force application

must be at least of the same order as the smallest body dimen-

sion for validity of the Saint Venant assumption. This implies

that Saint Venant's principle cannot be applied across the

thickness of a plate. However, classical elasticity theory

has modeled thin plates as a two dimension body with great

success. The Timoshenko and Goodier plate example previously

discussed uses this two-dimensional model with very good re-

sults. This raises the question of validity in the laminated

composite plate and plane stress modeling in such plates.

In the work of Pipes and Pagano [16], the interlamina

stresses were studies. These stresses were found to be signi-

ficant only in regions near the free edge approximately equal

to the laminate thickness where the thickness was at least an

order of magnitude smaller than the other dimensions. Justi-

fication for the plane stress model and for the invocation of

Saint Venant's principle in the third dimension exists if that

dimension is small compared to the other two dimensions.

If one examines classical laminated plate theory [31, it

is found that the stress gradient across the lamina thickness

is averaged out of the problem and only the two-dimensional

portion of the problem is considered. If the interlamina

stresses are not significant, one might also ask if the

12



averaging of the stress across a lamina as in classical

laminated plate theory has an appreciable affect on the vali-

dity of solutions. The analysis of Rizzo and that of Richards,

et al., are essentially dealing with a plate of a single off-

axis lamina. The two-dimensional models used in these studies

showed a high correlation with experimental results.

Probably the most attractive reason for using a two-

dimensional model is the level of computational difficulty

4compared to the three-dimensional problem. The two-dimensional

solution has given good results in the isotropic case and in

the laminated composite examples cited, with less computation.

The level of computational difficulty in many cases can be

directly tied to the cost of computer time and ultimately, in

some cases, to the ability to obtain a solution for a parti-

cular problem.

13



III. Numerical Analysis

The finite element method was used to generate the data

obtained in this thesis. The finite element models incorpor-

ated in the numerical analysis are discussed herein.

General Comments

In the previous sections, it was pointed out that a point

4 exists sufficiently far from the end conditions where the

stress no longer becomes affected by the loading conditions.

In order to locate this point, an exact solution becomes

necessary. Since exact solutions are difficult, if not im-

possible to obtain for composite material problems, it is

useful to carry out approximate numerical solutions and place

a level of confidence on the results obtainei.

Ihe level of confidence placed on a given solution obtained

due to a particular finite element model may be associated with

the error involved in the technique used to obtain the solution.

Durocher and Palazotto [17] have pointed out that the sources

of error can be classed as idealization, discretization and

manipulative errors. Replacing an anisotropic or orthotropic

material with a homogeneous continuum is a typical example of

the idealization error. Errors of this type are common to all

engineering models. The discretization error is due to re-

placing the continuous medium with finite elements. The

manipulative errors are associated with truncation and round

off produced by computer programming. The latter sources of

14



* error are not inherent to the engineering model. Thus, a

convergence study is required to guarantee the numerical

solution approaches the exact or idealized solution. The con-

vergence of the chosen numerical models will be discussed in

subsequent sections.

The finite element program used in this analysis was

developed by Venkayya [18] of the Air Force Flight Dynamics

Laboratory. Classical laminated plate theory and the displace-

ment method of finite element is used in this program. The

program can be utilized to analyze plates with several combina-

tions of ply orientations as well as orthotropic plates. This

study employed (0, ±45, 90)s, (0, 90)s, (0, ±45)s, and (±45)s

oriented plates along with plates of Odeg, 90deg, and 45deg

fiber orientations. The program incorporated several standard

elements, including the constant strain triangle which was

exercised in this study. Relative percentage of ply orienta-

tions contained in the laminate and element material properties

were applied in calculating the elemental stiffness matrix.

The necessary characteristics of proper convergence is

noted by Durocher and Palazotto. Mesh refinement has been

carried out to enforce convergence. The specific end conditions

will now be addressed using Fig 3.

Parabolic Tension End Condition

The parabolic tension end condition is an attempt to model

a non-uniform tensile end force in which the edges of the plate

are allowed to slip. The plate is loaded at the ends with a

1s



Y Y

0 -2 XY) i
a ) b) o)

Fig 3. End Conditions Investigated

force distribution per unit thickness given by the equation

Nx = N o(l -y 2) I I

where N is the end force, N is the normalization force, and
X 0

y is the coordinate across the width of the plate with zero

at the center. The load is symmetric about the x-axis and the

y-axis, thus only a quarter of the plate need be modeled. The

material properties for all the laminated plate orientations

and the Odeg and 90deg fiber oriented plates are symmetric

about these axes also. The exception to this is the 45deg

fiber oriented plate which will be discussed separately. The

first quadrant meshes used for these cases are shown in Fig 4.

In order to model the high stress gradients with constant

strain triangles, a more refined mesh is needed over those

areas. This dictates a larger number of elements near the

16
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(a)

k z

(b)

Fig 4. Quarter Plate Convergence Study Meshes With Symmetry

Conditions for Parabolic Tension End Conditions
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loads. The symmetry conditions require restraints as shown

in Fig 4 along the quadrant boundaries.

As constant strain triangles were used, the centroid

coordinates of the triangle are employed for stress comparison

and the loci of points must be established in the analysis for

convergence to a particular solution. The end condition under

study was also investigated by Choi and Horgan in their analy-

sis of an orthotropic graphite epoxy plate. The series

solution obtained by Choi and Horgan was compared to the

results in the convergence study.

Three mesh arrangements were studied in order to estimate

convergence. Stresses were checked along the width of the

plate at various stations on the x (length) axis. The a

stress across width sections must average to 2/3 of the stress

normalization factor co, and ay stresses must average to zero.

This was the case in the three mesh arrangements to within

five percent. The fine mesh arrangement shown in Fig 4-C

had average stresses c values within one percent of 2/3 ao

All three solutions compared favorably with the Choi and Horgan

solutions.

As previously touched on, the 45deg oriented fiber plate

could not be considered symmetrical because of material proper-

.1 ties. This is in contrast to the ±45deg combination as in

these laminates the plies act together as one material. Figure

5 depicts the boundary conditions utilized for the 45deg fiber

oriented plate and the mesh arrangements which were used for

the full plate convergence study. Two mesh arrangements were

18
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N ISN 0( 1-Y2-

Fig S. Full Plate Convergence Study With
Parabolic Tension End Condition
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employed in this convergence study and the results were

similar to those obtained with the quarter plate mesh arrange-

ments. In both the quarter plate and full plate mesh arrange-

ments, the loads were applied to the end along X = L.

Parabolic Bending End Condition

The parabolic bending end condition was considered to find

the effects of end rotations on the decay lengths for Saint

Venant's assumption. This represents a pure bending load

which is not found in practical application, but this condition

gives insight to the in-plane rotational problem found in

rotating clamping devices. The force distribution per unit

width is given by

Nx = N0 (5y3/3) (111-2)

It should be noted that the term parabolic bending refers to

the shape of the loading curve as shown in Fig 6-a. Again,

Nx is the end force, N is the normalization force, and y is

the coordinate across the plate. As the full plate is modeled,

all laminates and single fiber oriented plates were analyzed

using this mesh arrangement. This mesh is the same as that

applied to the parabolic tension case. Timoshenko and Goodier

have shown that this loading condition produces a straight

line function when the point of Saint Venant's principle

validity is reached.

The average ox stress for this case is zero. All loci of

centroid points across the width of the plate averaged to zero

20
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Fig 6. Mesh Arrangements For Parabolic Bending
and Clamped End Conditions
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within one percent. This load was positioned on both ends of

the plate.

Clamped End Condition

The final end condition considered was the clamped end

condition. This is a condition normally associated with

* experimental tension specimens. The shear-moment coupling is

inherent in off-axis plate tests and would only be present in

symmetric laminated composite plates if rotating clamping

devices were used with an eccentric load. This loading was

investigated primarily to show the effects of shear on the

finite element model and to specifically point out difficul-

ties encountered in using the constant strain triangle. Wu

and Thomas call attention to the fact that bending and shear

coupling effects are not Saint Venant type problems but do

exist in real clamped end tension test. The end condition

load functions are

NX N 0(10 -2XY) (111-3)

adN =y N (-1 +Y) (111-4)

Here again, NX is the end force in the x direction, N 0is the

normalization factor and X and Y are the plate coordinates.

Nx is the end force in the y direction and provides the shear

to compensate for the moment produced by the 2XY term in N X.

The same full plate mesh was utilized in this analysis as was

employed in the previous end condition cases.

The load functions given above are more simple than those

22



used by Rizzo and can be derived by an Airy type function

bxy + c 2 + d 3(115

where b, c, and d are arbitrary constants. The resulting load

functions are a uniform tension added to a uniform in-plane

bending moment and a parabolic shearing force which is re-

quired for moment equilibrium. These loads will give insight

into the actions of various plies and the dependence on ply

lay-up for strength measurements in laminated plates.

Although the uniform loading in the x direction and the

parabolic shear loading representation of the clamped end

problem is simplistic, the insight gained from this end con-

dition will give the reader some feeling for the difference

between the Saint Venant decay length problem and the moment-

shear coupling problem in a true clamped end plate.
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IV. Results

The results of the finite element analysis of the three

end conditions will be discussed in this section. Graphical

representation of the normalized stress dissipation across the

width of the plate at specific stations along the length of

the plate are included in Appendices A through C. The normal-

ized stress values are given by

SIGMAX = oxl o

~(IV-l)

and SIGMAXY = xylao

where SIGMAX and SIGMAXY are normalized stresses, a and a

are the stress in the x direction and shearing stress respec-

tively, and a0 is the stress normalization factor computed by

dividing the resultant force normalization factor, NO, by the

width of the plate.

The point of Saint Venant's principle validity is described

by a constant uniform state of stress in each case. The decay

length of the x stresses were chosen by comparing the ox

values along a particular loci of mesh element centroids, across

the width of the plate, with the constant state of stress for

the particular end condition. The station or x-coordinate

which defined the region of Saint Venant's principle validity

was chosen as that station where the locus of stress values was

within ten percent of the constant state of stress. The ten
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percent margin is consistent with the mesh size, the program

round-off error, and the ability to practically measure stress

in an actual application.

In all cases, the ax and oy direct stresses acted similarly

in that the constant stress value was reached at the same

station. The a stresses were highest in the Odeg plies,

followed by the ±45deg plies. The lowest ax stress values

were evidenced in the 90deg ply. This is due to the relative

stiffness properties. Discussion of the individual end con-

ditions follows.

Parabolic Tension End Condition

The Odeg fiber oriented plate results, shown in Fig A-1,

agree closely with the results obtained by Choi and Horgan.

It was found that this case produced one of the longest decay

lengths and, thus, one of the smallest areas for use of the

Saint Venant's principle. Larger areas of Saint Venant's

principle validity were found for the 90deg and 45deg fiber

oriented plates.

The laminated plates were investigated for three aspect

ratios (length to width, L/W). The constant uniform state of

stress for this end condition averaged across the plies of the

laminate is 2 However, a different value for the constant

uniform stress was fcund for each ply according to the relative

stiffness of the ply. All laminas had the same percent thick-

ness for a given ply lay-up, and all plates had the same total

thickness. Thus, plates with less laminas had thicker laminas
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than plates with more laminas and exhibited lower stress

gradients.

As shown in Table II, the percent of the plate length

where the stresses reach a value within ten percent of the

uniform value is on the order of one plate width for aspect

ratios of five and ten, with the exception of the (0, 90)s

plate. In this plate the same regions of constant uniform

stress were not exhibited for both plies in the three and five

aspect ratio cases, and the decay length is much longer in the

L/W = 10 case as compared to the other laminates. This is

attributed to the greater stiffness of the Odeg ply in tension.

The stress values differ in this case by a factor equal to the

ratio of E 1to E 22, which would be expected for a pure tension

loading.

The aspect ratio of three had regions of stress values

within ten percent of the constant uniform stresses for the

(±45)s and the (0±45)s plates. The (0, ±45, 90)s case exhibited

dissimilar ply actions. Again, this is attributed to the

stiffness properties. The (0, 90)s plate did not reach a uni-

form stress value for the aspect ratio of three. It must be

pointed out that if a margin of less than ten percent were used

for the aspect ratio of three, none of the plates would reach

the uniform stress value for this end condition.

As shown in Fig A-3, the stress values for the 45deg fiber

oriented plate had a certain amount of variation about the

mean value. This phenomena is specifically pointed out since

all off-axis plies exhibited this variation in stress values.
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The variation appears to be related to the shear stresses

in the problem as is later evidenced in the clamped end con-

dition.

Yx

N --N°( I-Y

TABLE II

Parabolic Tension End Condition

Uniform Stress Station

Orientation L/W = 3 L/W = 5 L/W = 10

0 - - .43L - -

90 -- .86L

45 -- .73L --

(±45)s .63L .77L .87L

(0,±45)s .43L .63L .82L

(0,90)s 1 .26L , .43L' .63L

(0,±45,90)s .47L 2 , .57L 3  .77L .88L

Note: 1 No uniform stress value
2 +45 plies

1 0 and 90 plies
4 90 plies
s 0 plies

Graphical results for this end condition can be found in

Appendix A.
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Parabolic Bending End Condition

This end condition reaches a constant straight line stress

value for axas shown by the figures in Appendix B. This

agrees with the results Timoshenko and Goodier predicted for

isotropic materials. This constant straight line stress value

was utilized to define the region of Saint Venant's principle

validity. As in the previous end condition, the single fiber

orientation plates were investigated for the aspect ratio of

five. Again, the Odeg fiber oriented plate has the longest

decay length due to the relative orientation stiffness prop-

erties along the load axis. The role played by the relative

stiffness properties can be seen in Fig B-4 thru 5 for the

(0, ±45, 90)s plate. This is similar to what was found in

the parabolic tension cases. As in the previous end condition,

all of the decay lengths are within one plate width along the

length for all cases considered with exception to the (±45)s

plate with aspect ratio of three. In the aspect ratio of the

three, the higher stress gradients created by the end loads

start to interfere with one another before a uniform load can

be reached. This caused the drastic decrease in the region

of Saint Venant's validity for the (±45)s plate.

The (0, 90)s plate displayed a much different behavior

under this loading than under the parabolic tension action.

This is attributed to the stiffness properties of each ply.

The Odeg ply is much stiffer in tension than compression due

to the values of the moduli, Ell and E 22. The 9Odeg ply has

the same moduli, but the role of each is reversed. Due to
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Poisson's ratio effects, the 90deg ply carries more of the

load in this case than in the parabolic tension loading.

However, the stress values in the 90deg ply is still less

than those in the Odeg ply.

The graphical results of Appendix B, once again, depict

variations in normalized stress values for different ply

lay-ups due to differences in ply stiffness properties, as

all plies have the same relative thicknesses for a given lami-

nated plate. The Odeg lamina carried most of the stress in

the plate, as was found in all end conditions investigated.

This is due to the increased stiffness properties of this

orientation in the direction of the loads. A tabulation of

the uniform stress positioning for this end condition can

be found in Table III.

Clamped End Condition

The clamped end condition was investigated to show con-

stant strain triangle modeling difficulties and the difference

between Saint Venant end effects and the moment-shear coupling

found in a truly clamped end with rotating clamping devices

and eccentric loading. The clamped effect is a displacement

end condition. The program used in this investigation did

not have provisions for end displacements; however, the re-

sultant force end condition produced displacements which agree

with those reported by Pagano and lalpin. The clamped end

condition was examined for the aspect ratio of five in the

single fiber oriented plates. The laminated plate cases were

analyzed for aspect ratios of three and five. The graphical
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Nxz N. S 3)

TABLE III

Parabolic Bending End Condition

Uniform Stress Station

Orientation L/W : 3 L/W = 5 L/W = 10

0 - .76L --

90 -- .93L -

45 -- .83L --

(±45)s .17L .76L .87L

(0,±45)s .73L .82L .92L

(0,90)s .67L .76L .92L

(0,±45,90)s .56L '  .76L 2  .76L .83L

Note: ± -45 plies
2 0 an- 90 plies

results are presented in Appendix C.

From elementary theory, one would expect constant shearing

forces throughout the length of the plate and decreasing stresses

due to moment as the center is approached. The center x

stress should be the constant tension stress value. The re-

sults for this end condition generally bears this out with

variations due to material stiffness. The exception is the
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off-axis plies. As displayed in Fig C-3, the off-axis plate

shearing stresses did not reproduce the loading condition

curve as would be expected. In checking the average stress

values at a given station along the x-axis, poor agreement

was found with the input load function. In the multilayered

plate, the -4Sdeg ply complements the 45deg ply such that,

when considered together, the oxy curve has a similar shape as

the shear end loading curve. In all of the laminated plate

graphical results of Appendix C, the action of the ±45 plies

are considered as acting together and the averaged finite ele-

ment points are shown to depict the stress variations per ply.

As the aspect ratio was increased from three to five in

the course of this investigation, the variation of shearing

stresses mentioned under the parabolic tension discussion

increased. The variation affected the mean value of the shear-

ing stress curves from station to station as displayed in the

figures of Appendix C. The variation appears to be related to

the orientation of the fibers within a given constant strain

triangle. The ±4sdeg plies were affected more than the other

orientations as the off-axis orientation is more sensitive to

shear loads. A possible problem with modeling off-axis mater-

ials with a constant strain triangle is that the element load

conditions are not the same as found in the continuum. In all

cases, the a ystresses varied with the shearing stresses as

to keep the constant strain triangle in equilibrium. Richards,

et al., experienced variations in off-axis stress results and

used averaging over a very refined mesh to compensate for the
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variations. Further mesh refinement was prohibited in this

study because of computational storage requirements. The

variation of the mean value of shearing stresses for the

±45deg plies is on the order of ten percent and for the Odeg

and 90deg plies about two percent. It is felt that this is

the order of error induced by this phenomena. The a stresses

did not exhibit the above mentioned variations. If variations

were present in the a results, it was within the accuracy of

the computations.

The practical insight given is that the stress measurement

in off-axis plies can be drastically different than would be

expected from elementary theory, discounting the variations

mentioned above. This has implications for instrumenting

laminated plates for stress measurements. As shown by the

figures in Appendix C, the variations in stress values per ply

in a laminated composite plate can be considerable. The ex-

ception to this is the (0, 90)s plate shear stress results

which indicate an equal division of the load between the plies.

The clamped end effects are totally unrelated to the Saint

Venant end effect and must be accounted for in material pro-

perty measurements. This is born out in the ±45deg ply

results as the end load causes a constantly changing yxy

shear stress in addition to the constantly a x direct stress.

In this case a region of Saint Venant's principle validity

could be found if the a stress reached a uniform - +

VQ
distribution and the oxy stress reached a uniform T[ stress

value. However, no such station was found as the Saint
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Venant ax and Oxy stress distributions were the input

functions at the loaded edge.

In all the figures in Appendices A through C, the four

stations depicted are on the positive half-length. The

percentage of plate half-length is shown in each figure.
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V. Conclusions

The basic conclusions of this investigation is that

material properties of laminated composite plates can be

measured with some degree of confidence in plates with aspect

* -ratios greater than five, but some striking differences exist

from one lamina to another in a multi-layered plate. The

*relative stiffness properties of a given lamina greatly affect

the stresses measured. In some ply lay-up and end condition

combinations, the difference in lamina stresses affects the

* decay lengths. These differences in lamina stresses could

give rise to erroneous stress measurements if strain gages

are employed only on the outer lamina of a plate. In most

cases with aspect ratios of five or greater, the region of

Saint Venant's validity was reached at a distance equal to

one plate width from the edge. Caution should be exercised,

however, in applying this result to other end conditions as

the lamina stresses vary greatly with ply lay-up and end

condition.

In general, for the parabolic tension and parabolic bending

condition, the region of Saint Venant's principle validity zan

be found. The clamped end condition points out the further

complications incurred in a tension test of the laminated

plate. This end condition affects laminated plates in a

manner similar to the results reported by Wu and Thomas for

off-axis plates. The stress gradient due to moment does not
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dissipate to a uniform stress except at the center of the

plate, and shearing stresses are always present. If one

examines the direct ax and OY stresses, a similar dissipa-

tion pattern is found. The highest stress gradients are

found in the stiffer laminas (i.e., the Odeg ply exhibits

higher direct stresses than the ±45deg plies, and the 90deg

* plies exhibit the smallest stress values). This is in con-

trast to the shearing stresses where the ±45deg plies exhibit

the highest stress magnitudes, and the Odeg and 90deg plies

act together.

The aspect ratio of three in all cases may not give a

region of Saint Venant's validity depending on the accuracy

!,required. For this investigation, the ten percent uniform

stress region was only a small region in the center, and for

uniformity of stress less than ten percent, there is no

region of Sair.t Venant's validity.

More can be drawn from this study if one thinks of the

possibility of superimposing the stress fields produced by

the three stress fields. This would model a non-uniformly

clamped end with a rotating grip. In this case, the Saint

Venant end effects would decay at about one plate width from

the loaded edge, but the stress field due to the moment-shear

coupling effects would not dissipate. The simple load per

unit area, P/A, stress field would only be realized at the

center of the plate, regardless of aspect ratio. In addition

to the P/A stress field for ox, a parabolic shearing stress

would be present. This leads to the conclusion that
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meaningful Gx stress measuiement can only be made at the

center of the plate in material property calculations.

Shearing stress measurements would be greatly influenced by

the shear-moment coupling. In addition, the stress gradients

per ply crientation are not the same. This can lead to erro-

neous stress measurements if only the outer plies are

instrumented.

It is further concluded that not enough data has been

gathered to adequately investigate the variation in stress

values found in the off-axis plate cases and in the clamped

end condition where shear loading is used. The effects

of using constant strain triangles with off-axis orthotropic

materials needs further study. It is felt that further mesh

refinement arid averaging stresses across several triangles

would produce better results; however, computer storage

limitations are a problem with the program utilized herein.

This aspect of finite element analysis merits further study.
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Appendix A

Graphical Results of the Parabolic

Tension End Condition

The following figures resulted from the use of the quarter

plate mesh shown in Fig 4-C with the exception of Fig A-3,

which utilized the full plate mesh of Fig 5-b. All stresses

in the figures are normalized to the average stress ao as

follows:

SIGMAX - (A-1)
0

where SIGMAX is the normalized stress value, ax is the stress

in the x-direction and a is the average stress computed from

No, the average resultant force. In all figures the four

stations depicted are on the positive half length of the plate.

The percentage of the half length is noted in the legend for

the station plotted.
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Appendix B

Graphical Results of the Parabolic

Bending End Condition

The following figures resulted from the use of the full

plate mesh shown in Fig 6-A. All stresses in the figures

are normalized to the average stress co given by Eq (A-1).

Legend comments found in Appendix A apply.
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Appendix C

Graphical Results of the

Clamped End Condition

The following figures resulted from the use of the full

plate mesh shown in Fib 6-B. All stress in the figures are

normalized to the average stress a° given by

a
SIGMAX

0 
(C-1)

and SIGMAXY xy
a

0

where aX is the stress in the x-direction, axy is the shearing

stress, SIGMAX is the normalized ax stress, SIGMAXY is the

normalized axy stress, and ao is the average stress computed

from No, the average resultant force. Legend comments of

Appendix A apply.

71



C1) Cd)

LO1

0 C0 -1

LCE CJiCC:

03 0 ---

1 0

ot 00 0 00,1-' 00t1 00 0 0 01 -

a: 0

+

z ce-JJ~
L.J C) lN 00 - d

0to *HU( 4-

C3 II .O .- m (A .

m 0)

C) CI)

C)) C3

Cc 0

CJ C)4

o 0
0,..-CC id Hr

0 0!

)ot W0 00*1- 0011 0010 0011H'

72



0n C

o V,>

a: a

0)U 0 

4-) 0 C1)411r 0
Ot 00 00~~ 0t D0 0DM 0  

C

cx_ ( r- 14- C

0 +0 0

0~~~ C.J LI- 1-C) (0 ~

Ij-I

O< 0

E) D0 0

CD)

0>- 0>- 1-00 001 o l0 01

731N



.ME. C)l U I 1111 iiiill ~ ________-

C) C

C) 0 C

M C0

C) CC
o01 000- 0 00 0--

ok >

*CX C) 0

to 0o 0Dm-
C_ _ _ __ _ _ _ --- __O_______)_U3_ 'n

u IL 00-- D t 00 0

0.t
C)~ 4

CDN

C)-.0
Icli CE CCC-~

bJD:. C)*~ 1-

C3) U.) I I

0 1 ) J0*L) 001 0 10 01

740



Lo X o

C)) ')

0 0

0)0

C3- O r o or i

01 000n 00 - 00. 000 0

U~~~C E)-4ccm 0i

=0

-J 1-4

pAQ. et *EO 
C)C)C

: E)C:) 
(V3 C3)

a: C)
MIT 0 !0 o- 0-7 n~n o--4

I U

75>



o 0
LO W

o) 0

0 0C)

C3c CJ

E)J .U) 5

-4

C))

0~

0 -
Cz z0

u~ ~ E) -ccO a C I

-~ C)

Co 00

o 0

U:) U :)

001 000DI-0 *10 1 0 1

760



o0

o) 0
D 4-)

)0 T0 * o ) 0- 000>o*--

ax

0 0 C.,-

IL , 4- J

A3 --

2: >- <

UJ E)m U MC3C-
C)~

C) :Zr

Li) e: o -i

C) X C3

a:1 L; -0

00

Clo

)o 00.000- oo900i 0000 or-

77



X X

'-4-

0

0 0

+ cl0

-j H -i c r c

CD Lo0n
Cct 00, 00T- 14* X0 00 I-I'

u ~~ + ,CC0

E) 4J1 C0
(j~~C oL-H-

o~C .J. . CI;~()( ( ~c

0 +

OI000 O O - 00 1 0 4 0 01

781



Lo 0Lr

a:5 Cb

00C)

0t 0010 OD"- DOt1 00*0 00o-o

Xk 0

>C. 0

7-1

U.1 C3 -Jr

U3 on Lo (
'3-0 ti Licnr r D m'-'0

or 0 aj x II

0) +v -o a:m u oC
C) t4-4

+ C)-

+a+:r a:

.eye 0

0OT 0010 00 1- 0011 0010 00 1T-

79



C:) C)~a
a04

CE cc

0! C!)f

)011 00 O-- ' 0100* O --

C3

o2 -m In I

Er n 4 I I If

u E) + -j r [ uc)C

Ca

4--4--- 0:
Lr3 U3

CC u
or 000 0D- 001 000 0 Go

80)C:C I-)d



KaC
0)C)

000

00

CCN
-j - J - -

LJ o -- 10
0- a- n r

0 U)

~CD 0C(

CIf C4

C0 o

++

0-T-

)o 00*0 0- 00*ool 00*



03 0

00

o 0o
41C 111 1 '0 tr4

0 0)

Otl 00.0 0061 - 00 t 0010 00OT C-

-J-

Lu

a_:

Zo M

u0 E)w0

40 0

A< X

82



00

0,4-J

0 0

0 00,0 00"~~~ - 0 1 0' 0 T-
X 0)

w 0~ 00.1 - ,- 00~ C0. 00

CL

L5O~O~C~rC)

L) ~ ~ ~ ~ ~ ~ C >4..J-u s. ...

0 o 0<U

DO'l00*0 00 - 00 001 00

I A

0>-3>



o Co

oIM0
CD,1J

)O l000 0 0 10O 0, O T

< -0

O 0 7 I -

0c U

0- 11

LiJ E)01 c 33u

0 .. J LD ~ Wrn 1,-I
LI O~ ~ 0ir- C

C0

000 0 00 0 0011-



o 0

0-44-

0r 0
I-4-J

0 4-;

0tJ 00t 001- 4J1 0 O

Li~~~~ cx -m -C

0 - .

z 0-4
Ai,-" 

,"NuLLJ~O. aC-
)0*1 ~ ~ I 001 001 - 001000

83n



m CD

o-o CC e

r I

o'f 00.*0 00*T- 00' L 00.0 001T-
A,

Li.I m r

(n C- O M 
f

w a- 0 Ln 4--)

0- It * m 2: '3rI-
S- U3

M~ I 1

14P It)

C) 1  C)

o! 0
0 -4

oll 00,0 0011- 00 1 00 *0 002-

86



A-A@81 908 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO-ETC F/6 11/4
INVESTIGATION OF SAINT VENANTIS PRINCIPLE AS RELATED TO LAMINAT--ETC(U)
DEC 76 S R SMITH

WINCLASSIFIED IAFIT/GAE/AA/78D-132, lllff~lfff



0 0-

0>~U 0~

4-

m: w : -4
m m; 0 Ca. w

a-4 '- 4 J~

o) 0

cc u

/IQE)

879



'1 0

0X 0

0'0

01- 06- (-
00

.ct*)
o 41

4- C
)011 00 0 00T 001t 00 0 00 0

X1 >

I 0
o 0

03 4J

m w m

O00 00 - 0 00 
-

0 0

cc

88O

Ct C

0

Al00 00.-. 001 000 0--

88



a 0

I I

0>0
C.5

0

'-4 t64

0E 0

+ ) 0

o~C 4-J7
zL 40JJI -

OJ~ ~~~ ~~ftOP4J

cc "d I I 1 +1 U)

cr U -.

m cm

la Cb

)01 0000 OD' i- 00-1 0000 00. T-P

A AA



01
<1<

W e0
Icc

00

C3 C 0D

ot 0 0 00i, 0 000 01

+ 04-
T 2 ___ __ __ 0

01-4~~R 414 ~ 0-
U3 +1 U

0r 0 I IQ

LO W

z Oo

bJc C' 0f(b

90



o 0

o 03

I

P- - 1~

cc c

k X

04
4)0)

(n~~ ~ ~ I-I mIa

rI to +t

~o. ii CC

cc u

o >-C o

a:cc
P-4 1-4

1 91



-CD

01.1

0 0-

* . , x - -- DLo

0 0

o0 00.0 001- 00" 00 0 00T-

I .!, o

00

ILI ,rJ 0w, oc--rt - i 0  o

X: LO +1
c 1. I I I I

U' 00' cc 0 0

o 09D
CD 0

)o 00.0 00.1 00.1 00" 00T

A A

92



HC
tf x 0

cc CC

X: X

0000 00 - Do t DO00 0. 1-9

A>

- >- C"4 0
I + *

OC3 0 Cd -Hr.~~~M CIS. *.-

K3 - i w r-m w m4

cr C)x I I I I1(

a-

Cl 0

Cc u



Appendix D

Analytic Solution for the

Orthotropic Plate

The following mathematical development follows the analytic

solution presented by Choi and Horgan. An approach similar to

this can be followed if laminate plate material properties are

considered in place of constitutive constants. The development

for the Odeg ply is presented here for completeness. For

further details, Reference 6 should be consulted.

The strains for a plate in a state of plane strain are

as follows:

2eij = Ui j + Uj i  (D-1)

where V is the displacement. The strains can also be written

in terms of the in-plane stresses as follows

el 1 BI T 11+ 81222 + 1I6T12

e22 = $21TI1 + 82222 + 826T12 (D-2)

2e1 2 ' 061T11 + B62T22 + %66TI2

where the subscripts on the stresses and strains represent the

planes of symmetry in the material and the 's form the com-

pliance matrix. The elastic constants ($'s) are assumed to be

such that the strain energy density is positive-definite, and
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8 ij =Oji. The positive-definite condition yields the condition

11822 66 + 2816826812 - l1126

2 2
822816 a6612 > 0

(D-3)

8 11 >0, l 22812 >1 0

The Airy stress functions used are

= y, = and T = -xy (D-4)

where the subscripts denote differentiation.

The compatibility relations yield

B22xxxx - 2 02xxxy + (2812 + a660 xxyy

2816xyyy + 8llyyyy = 0 (D-5)

The equilibrium conditions are identically satisfied by

the stress functions. A solution of Eq (D-5) is sought in

the form

0 = eYXF(y) (D-6)

where y is a constant.

The lateral boundary conditions are

F(±l) = 0 F'(±1) = 0 (D-7)

for a plate loaded in tension.

Substituting the above stress function into the compati-

bility relation (D-5) yields:
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al 2 y + (212 + 866) 2F

+ 2a26y3Fy + F = 0 (D-8)

where the subscripts on F indicate diiferentiation.

Eqs (D-7) and (D-8) form an eigenvalue problem for the

ordinary differential Eq (D-8). A solution of Eq (D-8) is

sought in the form of

F(y) = eWy (D-9)

or = e-Y Xewy

= eW) Y x (D-10)

Eq (D-8) becomes

4 3 2 3
011 + 2a16y' (2 12 + 86 6 )y w 2 + 226

+22" = 0 (D-11)

We now let w = py where w and p are complex numbers.

Eq (D-11) becomes

llp 4 + 2$ 16" 3 + (2a12 + 266)P2

+ 2826 + 822 = 0 (D-12)

From the positive-definite strain energy density conditions,

it can be shown that the roots of V are complex or purely

imaginary.
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The conjugate pairs of roots are

Wl,2 = (p1 ± ql)y 3,4 = (P2 ± q2)y (D-13)

where U= P iq (D-14)

Using the Eqs (D-9) and D-13), the complete solution is

F(y) Ae(Pl-+iql)yy (P2 ±iql)yy (D-15)
, ~)= Ale + A2e (-S

~Plyy
F(y) = e (C1 cos qlyy + C2 sin qlyy)

~2 y
+ e (C3 cos q2 y + C3 sin q3 y) (D-16)

where Ai and C. are arbitrary constants.,1 1

For the orthotropic case, 816 = 0 and 26 = 0 and three

cases of the solution (D-16) can be considered.

2Case A: (2812 + 866 )  - 48118Z2 > 0

Case B: (2a12 + B66) - 481022 < 0 (D-17)

2
Case C: (2812 + B66 )  - 4a l122 = 0

For Boron Epoxy:

012 2 .227

a66 24.2

a11 = .722

22 13.6
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2I
(2612 + B66 )2 4 l1622

- [2(.227) + 24.Z] 2 4(.722)(13.6) > 0

:.Case A applies

when Case A holds

P1 = P2  0, w is purely imaginary

W ±qly =±q1,2 w q Y  3,4 = q2 Y

The even eigenfunctions of Eq (D-8) are

Fe(y) = cos yqly -Cos yq 2y (D-18)

cos yql cos yq2

where y is a root of

ql tan yq l -q2 tan yq2 = 0

The odd eigenfunctions of Eq (D-8) are

Fe(y) = sin yqly sin yq2y (D-19)

sin yql sin yq2

where y is a root of

q, cot yql - q 2 cot yq2 = 0

From the Airy stress functions and Eq (D-6), we get

ox= eYXF ,  = y2e-YXF T xy = +yeYXF'  (D-20)
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The total stress can be found by taking a summation of

the individual solutions or

k=l k ky

=k=lk

(D-21)

0xy k=l -y

xy E Ckyke Yk Fk(y)

where Ck is an arbitrary constant determined from the end

condition. Using the relationship

ez 2(cosh z + sinh z) (D-22)

Eq (17) becomes

CO

Z (ak cosh Yk + b k sinh Ykx )F k(y)
k= 1

CO

a (ak cosh Ykx + b k sinh Ykx )F k (y)
x k=l

20 (D-23)
a E Yk2(ak cosh Ykx + bk sinh Y)F(y
y=k=1 Yxky

CO

Ty Z k~alk sinh Ykx + b k cosh Ykx)Fj(y)

where ak and bk are arbitrary constants determined from the

end conditions and orthogonality conditions.
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